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Abstract

Consider the functional equations of neutral type

(1) S=D(t,x.) = £(t,x,) and (2) & [D(t,x.) - G(t,x.)] =
at 7% A at L LA 1

= f(t,xt) + F(t,xt) where D,f are bounded linear operators fram
C[e,b] into R" or C" for each fixed t in [0,w),
F=F) +Fp G=0p + Gp, ‘Fl(t:°)| s V(t)lol, IGl(t,°)| s r(t)'QI:-
r(t), bounded and for any € > O, there exists 5(€) > 0 such that
[F5(t,0)| = e]e], |6,(t,¢)] s€l¢], t 20, [¢] <B(). The authors
prove that if (1) is uniformly asymptotically stable, then there
isa §,0<{ <1 such that for any p>0, 0<¢ <, there
are constants v >0, M >0, s >0 such that if »(t) <M,

t+p
tz2 so,% [ v(s)ds < gvo, t > 0 then the solution x =0 of (2)

t
is uniformly asymptotically stable. The result generalizes previous
results which consider only terms of the form Fy,G, or F,,G,
but not both simultaneously, and the stronger hypothesis -

lim T(t) = 0,
t 9o
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Suppose r 2 O 1is a given real number, R = (-»,w), E 1is

a real or complex n-dimensional linear vector space with norm |.|,

C([a,b],E) is the Bunach space of continuous functions mapping the

interval [a,b] into E with the topology of uniform convergence,

If [e,b] =.[-r,0], we let C = ([-r,0),E) and designate the norm

of an element ¢ in C by |¢] = sup |¢(6)|. If @ is an open
-rs0s0

subset of RxC and f, D! @8 -E are given continuous functions,

we say that the relation

‘31.5 D(t,%,) = £(t,x,) @

is a functional differential equation, A runction x is said to
be 2 solution of (1) if there are ¢ € R, A > 0 such that

x € C([0-r,0+A),E), ({;,xt) €, t € (0,0+A) and x satisfies (1)
on (o,0+A). ‘Notice this definition implies that D(t,xt). and
not x(t) 1is continuously differentisble on '(0,0+A). For a given
ceR, ¢ eC, (0,0) € 2, we say x(0,¢) is a solution of (1) with
initial value (0,¢) .if there is an A >0 such that x(0,¢) is
a solution of (1) on [o-r,o+A) and xa(a,o) = 0,

Our objective is to study the relationship between the



uniform asymptotic stability of the linear neutral differential equation

S D(b,x,) = £(t,%,) ) (2)

and the perturbed equation

T [D(6,%.) - G(6,%.)] = £(t,%,) + F(t,x.), (3)

where D(t,xt) = ¢(0) - g(t,®), g(t,), £(t,.) are bounded linear
operators from C into E for each fixed t in [0,®), g(t,%)

is continuous for (t,9) e [0,w) x C

o

§(6,0) = [ [80(t,0)10(6),  £(t,0) = [ [dn(t,6)]0(6)
Y -

78

g(t,®) s K| o] |f(t,¢)l.§ s(t)|e], (t,%) e [0,®) xC

for some non-negative constant K, continuous non-negative function
£ eand u(t,e), n(t,s) are n x n matrix functions of bounded
variation on [-r,O].\ We also assume that g is uniformly non-
atomic at zero, that is, there exists a continuous, non-negative,

non-decreasing function y(s) for s in [0;r] such that
R o .
v(0) =0 [ [4gu(t,0)10(8) % v(s)|e].
-8

Throughout the paper, we assume that D - G,F satisfy



enough smoothness conditions to ensure that a solution of (5) exist
through each point (o,%) € [0,») X C, is unique, depends con-
tinuously upon (o0,¢) and can be continued to the right as long

as the trajecliory remains in a bounded set in [0,w) X C ., Sufficient
conditions for these properties to be true are contained in [2],

Basic to this investigation is the variation of constants
formula given in [1]. If the solution xt(c,¢) of the linear sys-
tem is designated by T(t,o)@, then there is an n X n matrix
function B(t;s) defined for 0 S 8 £t + r, t € [0,»), continuous
in s from the right, of bounded varistion in s, B(t,s) = 0,

t £s st +r, such that the solution x(0,?) of (3) is given by
t
xt(a,¢) = T(t,0)¢ + [ [-[dth(-,s)}G(s,xs)
d (&)

+ Bt(-,s)F(saxs)ds], tza,

Furthermore, by [1], if the solution x =0 of (6) is
uniformly asymptotically stable, there are constants M 2 1,

a > 0, such that

I2(t,0)0] s Me o], t202 0, ¢ e,

-o(t-8)

B, (+,8)] = Me tzsz o. | (5)

-a(t-

8
/ |duBt(-,u)| S Me 8), tzszo0z0.
o



In the following we will also assume that

G=G +G, F=F +F . (6)

where

|7 (£,0)] = v(t)]o]
(7)

|Gl(t,¢)] s m(t)]¢], tzo0, e
t+1
where w(t),v(t) are continuous, m(t), { v(s)ds are bounded for

t 20 and for any € >0 there is a 5(¢) > 0 such that
|Fy(t,0)] s elo], [ay(t,0)] z¢el|e], tzo, |o] <BEe). (8)
We can now prove the following

Theorem. Suppose F,,G, satisfy (7) and F,,G, satisfy 8). 1r
system (2) is uniformly asymptotically stable, then there is a
go, 0< §°<l such that for any p>0, 0<{ < ;o there are

constents v, >0, M >0, s, >0, such that ?.f

mt) <M, tzs ‘ (9)

B3

1 t+p
=[ v(s)as s fv, tzo0, (10)
Py o :



then the solution x = 0 of (3) is uniformly asymptotically stable,

Proof, Let R = [0,®). The boundedness hypotheses on
t+1

' m(t), [/ v(s)ds and using an argument very similar to the one
- %

in lemms 1, .of {3] imply foi; any B >» 0, there are 61(5) > 6,.
M,(B) >0 such that for any o € R* the solution x = x(0,¢)
of (1.1) through (o0,¢) satisfies [xt(c,tb)] s Ml(ﬁ)lﬂ for
osts o+ 28, provided that || s 51(6)“. From the hypothesis
of uniform asymptotic stability there are constants M 3 1,
a>0, such that B and T in (k) satisfy (5). 4 7 .‘%‘e
0<{<1/(2M-1). Then §{ <1 and § < (1+{)/2M. Let

My(B,8) = max [M(1+7*(0) + €); Ml(B)]Q/(l-Q). Choose
M°>0, B>0, €& >0 such that

1 %87 ur*(0)e™® + My(B, 00, + M,(8,0)E (L) + £ < (18)/24, (11)

where T (8) = sup m(t). The choice of M,,B,E satisfying (11) can
sst

be made in the following way. First choose B so that

W (0)e™® < (g)/6M - ¢/,

then choose Mo 8o that

My (B,4)M < (148)/6M - ¢/5

s s R AR AT e



and finally choose € so that

My(B, )8 (Lra™h) < (1+8)/60 - t/3.

Let s =0+ B and suppose (9) is satisfied.

From the hypotheses on F

021G

X for the above € > 0, there

is a 82(8) > 0 such that

|F,(t,0)] selo],  |ay(t,0)] = €0
for |9] <8&,(€). Choose &> 0 such that

My (8,£)8 < min (8, (8),8,(€)).

For any p >0, choose v, 80 that
op

o, (B,8)v, = (¢%-1)/(2¢%-1)

and suppose (10) is satisfied for this Vor

If k = k(t-g) is the integer such that kp st - ¢ <
(k+1)p then



t t k-1 o-{J+1)p
fe'a(t'u)v(u)du= / e"a(t'u)v(u)du + X f \ e'a(t'u)v(u)du
0 o+kp J=0 o+jp

k.l
sptv,+ Z e-a(t-c-dp-p)pgvo .
J=0

B okp
-a(t-g-p) l-e

-

= -l+ ____ez i e-a(t-c-kp)_e-a(t-u)} PLv,
L e .l

2%,
s _E._}. pgvo
eap-l

G

t
00,6 | et wyan ¢ (12)

Furthermore, since M s (1-1;):42(5,;)/2, we have

t o(t-u) M -0 . (1-0)
M £ e 1_f.(u)du s ﬂ;(éTU P e (o0e0) s S_z.s_S. <t | (13)

-

Let us write the variation of constants i. .mla for the

solution x = x(0,4) of (3) in the form



5 t
x, = T(t,0)¢ + (f + £ )[duBt(.,u)][Gl(a,O) - Gl(u,xu)]

o
t

+ [ Bt(-,u)Fl(u,xu)du .
o
. (14)

+ [ 1B, (+,0][6y(0,0) - G (8% )]
o
t

+ [ Bt(-,u)Fa(u,xu)du
o

for o058 st,
Therefore, as long as |x,| # &,(€), it follows frem (5) and

the hypotheses on F,G, that

x| & M1 ©) + £)] o] (*0)

+ M['lr*(a)e'a(t's)ﬂr (s)+€ (1+a )+f e'a(t )v(u)du] sup |xu|
osust
for cegsat, T 2 s=s°=a+B and use our estimates .u

BL,M, and (9), (..  11), then

Ixg| & M7 (0) + e)M +n sup x|
osust

1.
515M2l°l *+n s EW

for t2 o+ 28 as long as ]xtl.ia(z,. If & 48 chosen as

above and |[¢| < B, thenweknowthat

%l sy B) 0] 5 (1-2), ()] 0] /2 5 My(8,€)] 0] 5 By(e)



for 0t =0+ 28, Therefore,

Ix,| = Tnz(s,e)lﬂ +1 sup x|
osust .
for all t 2 ¢ for which ]xtl s 52(8). Consequently, for

lxtl & 82(8))

sup |x | <mma(s,e){¢|

osust

= it (6,0 o] (15)

s uy(8,)]¢] = B,(e)

for |¢| <& since Mz 1, The continuation theorem implies that
x(t) 4is defined for t 2 o - r, (15) is satisfied for t 2 o and
the solution x =0 of (3) is uniformly stable.

For s=s =0+f in (14) and t 2 ¢ + 28, it follows

from (14) and the estimates (15) and (13) that

|x,| = “% (1+n* (0) + £)e (59 | 1* (o) olt5,) + 7 (s )M,(B,8)

+ My(8,8 De(1a) + ch

sm%uﬁm>+w€““”+nfh!

s Mz(l-!;t*(o) + e)e-a(t-o) + gg—%"l-



10
For any B, (1+8)/2 < 8, <1, choose T 228 so large that
-oT * l+§
Me " (147(0) + €)+ == < 8.
For t 20+ T, it follows that

|x, | = 8°|¢[.

¢!
Since T is independent of ¢ and ¢, this clearly implies ex-
ponential asymptotic stability and proves the theorem,

In [1], asymptotic stability theorems of the above type
were proved for systems which contained either terms of the form
F,,G; or F,,G, but not both simulteneously. In addition to
cambining these results into one, the more significant part of the
above theorem is the fact that uniform gsymptotic; stabi]_.ity is
proved under the weak.hypothesis (9)e In [1], it was assumed that

mt) 20 as t —se,
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